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ABSTRACT 

This case study aimed to examine the spatial and temporal transferability of safety 

performance functions (SPFs), which were developed for the Iowa interstate system in 

the form of negative binomial regression models. Four years of crash data were integrated 

with geometric and traffic information over a four-year period for the entire interstate 

system. The segments were randomly split into two groups and these groups were also 

split into a pair of two-year time periods. This allowed for an assessment of model 

transferability across space, time and both dimensions. Separate models were estimated 

for each of the four datasets and these models were used in cross-validation exercises. 

The predicted values were directly compared to actual observed values to assess 

predictive accuracy.  In this setting, less spatial variability was shown as compared to 

temporal variability, which was largely reflective of significant reductions in crashes that 

occurred over the course of the study period. In all settings, temporal transferability was 

relatively poor. The results improved when calibration exercises were conducted. 

Ultimately, the results support prior research, which suggests state-specific SPFs are 

recommended in order to obtain better predictive capabilities. Full models, which 

considered numerous predictor variables, performed better than simple models 

considering only annual average daily traffic. Additional research is suggested in this 

area in order to better understand how spatial and temporal transferability compares 

across different empirical settings.
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CHAPTER 1.    INTRODUCTION 

1.1 Background 

 The state of Iowa serves as a major freight thoroughfare in the Midwestern United States, 

particularly along Interstate 80 and Interstate 35, which are major transport corridors serving 

east-to-west and south-to-north traffic, respectively. Figure 1-1 shows the layout of the Iowa 

Interstate network system. Besides, I-80 and I-35, other interstates include I-235, I-280, I-380, I-

480, I-680, I-29, and I-74. These routes cover a total length of 825 miles across the state. In 

addition to providing for efficient goods movement, another objective of the Iowa Department of 

Transportation (DOT) is to provide safe roadway conditions and facilitate progress toward the 

overarching goal of experiencing zero traffic fatalities. Figure 1-2 presents the history of crashes 

that have occurred on the Iowa interstate system from 2008 to 2017, including the numbers of 

total crashes and injuries, as well as the number of fatalities. It can be seen that fatalities have 

generally been decreasing while injuries and total crashes have largely plateaued. In order to 

facilitate further reductions in traffic crashes, injuries, and fatalities, an important objective is to 

allow for proactive design and the implementation of countermeasures that reduce the frequency 

and severity of crashes. One important tool in support of this objective is the use of safety 

performance functions (SPFs), which are mathematical models that can be used to predict the 

number of crashes that would be experienced for specific roadway geometry characteristics and 

traffic volumes. 

 



www.manaraa.com

2 
 

 

Figure 1-1: Iowa Interstate highway system network map 

 
 
Figure 1-2: Iowa Interstate crashes from 2008-2017 source from Iowa SAVER 
 

These SPFs are provided in the Highway Safety Manual (HSM) (American Association 

of State Highway and Transportation Officials (AASHTO), 2010), which provides guidance and 

best practices for safety management. The HSM is published by the American Association of 

State Highway and Transportation Officials (AASHTO). It provides analytical tools and 
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techniques for quantifying the safety performance of various types of road facilities. The first 

edition of the HSM provides initially predictive methods for rural two-lane, two-way roads, rural 

multilane highways, and urban and suburban arterials. Subsequently, additional research has led 

to the development of SPFs for freeways and interchanges. These models were developed as a 

part of National Cooperative Highway Research Program (NCHRP) Project 17-45 and the 

content comprise supplementary Chapter 18 of the first edition of the HSM. 

The primary data used for model calibration and validation were obtained from the 

Highway Safety Information System (HSIS) for the states of California, Maine, and Washington. 

It is important to note that research suggests the use of the SPFs from the HSM require local 

calibration or estimation of state-specific models in consideration of the fact that each state may 

have different features that are representative of the data from those three states. Concerns have 

been raised about the applicability, transferability, and accuracy of the SPFs. Studies of the 

calibration and development of jurisdiction-specific safety performance function were conducted 

for Alabama, Utah, Oregon and Michigan (Brimley et al, 2012;Mehta and Lou, 2013;Dixon and 

Avelar, 2015;Savolainen et al, 2015). A study in Utah developed new models for rural two-lane 

two-way highways and the results showed that the original HSM models under-predicted 

crashes. Moreover, the study in Alabama developed state-specific statistical models for two-lane 

two-way rural roads, as well as four-lane divided highways and found that the HSM-

recommended method for calibration estimation performs well. A study to assess the 

transferability of the HSM predictive method using data for a two-lane rural road network in the 

province of Salerno in Italy (Russo et. al, 2014). The results suggested that local safety 

performance functions and crash modification factors (i.e. CMF) should be developed to more 

effectively implement the HSM techniques.  
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It is necessary to conduct state-specific SPFs and validate the HSM predictive methods. 

The HSM recommends each state to have its own SPFs, and the manual outlines three different 

ways for states to use and apply SPFs to make better decisions: (1) network screening to identify 

potential improvement; (2) determining effects of safety treatments or countermeasures; and (3) 

determining safety impacts of changed design on project level.   

The Federal Highway Administration (FHWA) sponsored a project focused on 

developing state-specific SPFs (Srinivasan, Bauer, 2013). The project report provides guidance 

on how to develop local SPFs. Various forms of nonlinear regression models were considered, 

including power, sigmoidal, and negative binomial functional forms. There are a few studies 

conducted the statistical model comparison, thus, based on a state-specific database, model 

selection may result in different coefficients when forming the SPFs which will be introduced 

under the literature review chapter. 

Iowa generated its first version of Iowa DOT Data Driven Safety Guidance (Iowa 

Department of Transportation (Iowa DOT) , 2017) in October 2017. The intent of the document 

is to provide guidance on safety analyses for Iowa DOT interchange projects. This guidance 

concerns CMFs for use in crash frequency prediction, based on information from the CMF 

clearinghouse. Calibration factors developed by Iowa DOT's Office of Traffic and Safety are 

included, which can be used to adjust the HSM SPFs to Iowa conditions. Table 1-1 provides 

segment calibration factors developed by the Iowa DOT for urban and rural freeway segments, 

as well as two-lane highway segments. These calibration factors represent the average rate by 

which the base models from the HSM tend to over- or under-estimate crashes of various types on 

Iowa highways. Calibration factors greater than one are reflective of cases where the HSM 

models under predict actual (observed) crashes based on Iowa data while calibration factors less 
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than one correspond to cases where the HSM models tend to over predict. At this moment, the 

Iowa DOT has not developed state-specific safety performance functions using data from Iowa. 

Table 1-1: Iowa SPF Segment Calibration Factors (Iowa Department of Transportation (Iowa 

DOT) , 2017)  

Crash Type 
Calibration 

Factor 
Urban Freeway 

Multiple-Vehicle Fatal and Injury 1.26 
Multiple-Vehicle Property Damage 
Only 1.79 
Single-Vehicle Fatal and Injury 0.85 
Single-Vehicle Property Damage Only 1.17 

Rural Freeway 
Multiple-Vehicle Fatal and Injury 1.08 
Multiple-Vehicle Property Damage 
Only 1.67 
Single-Vehicle Fatal and Injury 0.64 
Single-Vehicle Property Damage Only 1.16 

Rural, Primary, Two-Lane Road Segments 
All crashes 0.84 
  

 
1.2 Research Objective 

The initial objective of this study aims to see if follow the HSM predictive method, will the 

model well-transferred and suit Iowa data. With regards of this objective, a series of SPFs are 

developed. Negative binomial regression models were estimated, as recommended by the HSM. 

An Interstate database was assembled to examine the safety performance of the mainline system, 

wherein segments are comprised of uniform characteristics and are exclusive of interchange and 

ramp sections. Segments with lengths shorter than 0.1 miles were combined with adjacent 

segments in ArcMap, as the HSM suggests a minimum segment length of 0.1 miles. The final 

analysis database includes segment-level traffic information, geometric characteristics, and 

roadside data, along with crash counts during the analysis period from 2012 to 2016. 



www.manaraa.com

6 
 

A series of SPFs were estimated using subsets of these data with the intent of validating the 

accuracy of the predictive models separately across space and time, as well as with respect to 

both dimensions. Goodness-of-fit is compared using metrics that include mean absolute error 

(MAE), mean squared error (MSE), root mean square error (RMSE). Ultimately, the results 

provide guidance as to the relative issues posed by temporal and spatial transferability.   

1.3 Thesis Structure 

This thesis consists of six chapters in total. This introductory chapter provided the motivation 

for the present study. The remaining chapters are briefly described below: 

• Chapter 1: Introduction- This chapter introduces the background on general 

information related to the documentation of safety predictive method. The main 

reference is mentioned as well as the necessity of current research objective. The 

following sections under this chapter are stating the detail information of the 

research objective. 

• Chapter 2: Literature Review- This chapter is structured into three parts to 

summarize the existing papers established in the related area. This chapter begins 

by examining previous studies on a validation techniques that inspired the present 

study. Those techniques gave insights on how to compare and identify function 

performance, and how to assess transferability of models by focusing on data 

sample design. Additional work on analytic methods involving before-after and 

cross-sectional as well as Empirical Bayes are discussed. The second section 

examines state practices on SPFs development.  The last section briefly 

introduces the negative binomial model and talks about the applied examples in 

similar studies. 
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• Chapter 3: Data Description- This chapter describes the data used in this study, 

including databases from Iowa DOT and manually combined segments. A data 

integration process using ArcMap is presented. All variables used in data 

analyses are summarized statistically including crash data, traffic data and 

roadway characteristics. 

• Chapter 4: Methodology- This chapter states the statistical methods and 

validation techniques used in this study, including the general formulas, 

coefficient descriptions, and reasons for selecting those methods. A detailed 

study design is presented to talk through how to validate the model across time, 

space and both dimensions, and how to examine transferability by designing the 

sub-datasets. 

• Chapter 5: Results and Discussion- This chapter presents the results of the 

statistical models developed for this study under each validation purpose and 

examines why those results were obtained. 

• Chapter 6: Conclusion and limitation- This chapter concludes this study with a 

concise summary of key findings. Limitations and expectations for future work 

are presented. 
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CHAPTER 2.    LITERATURE REVIEW 

This chapter is organized into three sections to introduce previous work on safety model 

transferability. The first section introduces two study cases on applying validation techniques 

and comparing SPF models, which inspired the present study. The second section examines how 

various states have either developed their own SPFs or calibrated HSM predictive methods. The 

third part examines previous studies on the development of negative binomial models for safety 

performance prediction. 

2.1 Validation technique and analytic method 

There were two validation cases in recent years on safety performance functions which 

inspired the methodology of the present study. This research (Dixon and Avelar, 2015) applied a 

validation technique to safety performance functions developed by the Oregon DOT for arterial 

segments. The Oregon DOT previously developed its own SPFs for arterial segments, and the 

validation activities were assessed within three technique approaches: spatial transferability, 

spatial-temporal transferability, and individual coefficient stability and significance of the 

models. 

To examine spatial transferability, the researchers reviewed the model results for the 

same year in the original analysis at a different group of sites. The direct comparison results are 

shown in Figure 2-1. The predicted values are not statistically different from the observed values 

because the p-value of goodness-of-fit (GOF) was 0.0828 but should at least equal to 0.05 when 

achieve a 95% confidence interval.  

For the spatial-temporal transferability approach, the predictive power of the model was 

verified for a different time period. The sites were controlled, the spatial analysis was designed 

into two time-base cases: (1) only crashes occurring from 2009 to 2011; and (1) all crash data 
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from 2004 to 2011. The direct comparison results are shown in Figure 2-2. The paper pointed out 

that it was reasonable to expect the variability of crash frequency to increase when the number of 

crashes increased. The authors constructed the plot to compare observed crashes versus predicted 

crashes graphically, as shown in Figure 2-3 and 2-4 respectively for the two time-base cases. The 

analysis indicated that the predictive power of the urban model was generally suitable, and the 

predictive model tended to deviate from the observed crash frequencies more than expected. 

  

Figure 2-1: Original model predictions versus observed validation crashes (urban) p-value= 
0.0828 (Dixon and Avelar, 2015) 
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Figure 2-2: Crash distributions associated with time for (a) 2009-2011 and (b) 2004-2011 (Dixon 
and Avelar, 2015) 

 

Figure 2-3: Predicted and observed urban crash frequencies for 2004-2008 (sites are identified by 
a number) (Dixon and Avelar, 2015)  
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Figure 2-4: Site expected frequencies for (a) 2009-2011 and (b) 2004-2011 (Dixon and Avelar, 
2015) 

As noted in the final guidance report, temporal correlation could result in incorrect 

estimations of coefficients’ standard errors. The guidance provided methods for addressing this 

issue by estimating generalized equations or using random effect negative multinomial models 

(Srinivasan, Bauer, 2013). 

Regarding the approach of equivalent model coefficients, the accuracy of coefficient 

values of the original model was analyzed and verified. In addition, a study examined the 

theoretical characteristics of the modeling approach and compared them using two different 

datasets. The results showed that these methods had very similar performance. A sensitivity 

analysis was conducted to explore how the performance of these techniques vary by degree of 

dispersion and observed correlation levels of total and severe injury crashes with potential 

explanatory variables (Avelar, Veronika, Jirˇí, 2018). 

Another study validated FHWA crash models for rural intersections. The validation was 

conducted using internal validation and external validation approaches. Internal validation took 
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care of the underlying phenomenon explanation, and external validation was concerned with the 

temporal and spatial transferability of the predictive model. It also focused on GOF, using mean 

prediction bias, Mean Absolute Deviation (MAD), Mean Squared Prediction Error (MSPE) and 

Pearson product moment correlation coefficients between observed value and predicted values. 

The preliminary validation consisted of running models for different years for the same 

intersection. This aimed to assess the ability of models to forecast crashes across time. Data from 

Minnesota was used to provide multiple years of accident data, and data from Georgia was used 

for model validation across jurisdictions. The external validation used GOF of the statistical 

models to compare independent data (Oh et al., 2003). 

The NCHRP 17-45 report (Bonneson et al., 2012) provided a two-step process for model 

validation. The first step required predicting the crash frequency using calibrated models from a 

third database which was not utilized for the development of SPFs as known as the calibrated 

models. The second step required comparing CMFs between calibrated CMFs and similar CMFs 

mentioned in previous literature to ensure that the calibrated CMFs were consistent with 

previous research results. As mentioned previously, data from three states were included in the 

HSIS database. The models were developed using data from California and Washington, with 

data from Marine excluded for validation purposes. A study came to reference which applied 

geographically weighted regressions to account for spatial heterogeneity to evaluate whether 

SPFs would vary across space. This study identified better performance between two different 

negative binomial regression models through the comparisons based-on time and space basis: (1) 

geographically weighted negative binomial regression and: (2) traditional negative binomial 

regression. The log likelihood, Pseudo-R2 and AIC (Akaike Information Criterion) were used to 

compare model performance (Liu, Khattak, Wali, 2017).  
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To validate models across time, the before-and-after method could be used, while cross-

sectional study are commonly used for assessing space bias throughout samples. In addition, 

Empirical Bayes and full Bayes methodology are often used for road safety studies. An article  

(MacNab and Ying C., 2003) illustrated modelling technique implementation in accident and 

injury surveillance and prevention system which could be utilized by transportation or health 

agency to examine routine on accidents, injuries, and hospitalizations and target high-risk 

regions. An empirical Bayes inference technique using penalized quasi-likelihood estimation was 

implemented to model both rates and counts, with spline smoothing accommodating non-linear 

temporal effects. The technique introduced in this article providing application and illustration 

on spatial-temporal modelling framework as part of accident surveillance and prevention system 

to identify the high-risk regions. A Bayesian hierarchical Poisson random effects spline model 

incorporated both spatial and temporal components into a unified framework to space and time 

surveillance. A validation study (Wang, Abdek-Aty, Lee, 2016) for a Full Bayes methodology 

for observational before-after studies was conducted and the results supported that the Full Bayes 

could provide similar results as Empirical Bayes. To examine SPFs’ transferability for 

developing CMFs, a study modified before-after study with EB adjustment which was a method 

combining before-after and traditional EB to strengthen on case control techniques when using 

regression models. The paper pointed out that this combo method could make the estimations 

more precise and correct the bias of regression to mean.  

In a word, the validation should be designed and conducted either across time or across 

space or both dimensions. A few studies were conducted using data from outside of the U.S. that 

to examine international transferability in other countries such like Italy and Canada (Russo et 

al., 2014; Martinelli et al., 2009; Persaud et al., 2012)  
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2.2 HSM predictive method calibration and state-specific SPFs examples 

Researchers and state DOTs have been working on the calibration of HSM and 

developing customized SPFs. In 2010, a study  (Garber, Haas, Gosse, 2010) examined SPFs 

provided by SafetyAnalyst, a software tool that provides SPFs for two-lane roads in Virginia but 

which was based on data from Ohio. The study developed separate models for urban and rural 

areas through generalized linear modeling with negative binomial distribution assumed crashes. 

The results indicated that the SPFs developed using local data fit better than the results obtained 

from SafetyAnalyst. 

The state of Illinois completed a project and established a report (Robert, Jang, Ouyang, 

2010) on development of state-specific SPFs. In this report, predicted SPFs were applied for 

roadway segments and intersections under Illinois DOT's jurisdiction by modeling the 

relationship among traffic, geometric conditions and crash density. The developed SPFs were 

used to identify high potential locations for safety improvements. Florida also established a 

report (Srinivasan and Bauer, 2011) on developing and calibrating HSM predictive methods for 

Florida conditions both on segment-level and intersection-level. The study suggested that the 

models should be developed at a lower level to obtain better results, because district-level or 

population-group-level calibration factors tend to achieve more adequate results than state-level. 

In 2012, two papers talked about development jurisdiction-specific SPFs both using 

negative binomial regression models. One was the city of Regina, Saskatchewan, using five-year 

crash data from 2005-2009 (Young and Park, 2012), and another was the State of Utah (Brimley 

et al., 2012). They both concluded that state-specific SPFs provided the best fit to the data. 

In 2014, a research (Kweon, Lim, Turpin, Read, 2014) was conducted on a customized 

SPF development procedure for Virginia DOT by using empirical data on four-leg signalized 

intersections of rural multilane highways. Within the same year, another study (Islam, Ivan, 
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Lownes, Ammar, Rajasekaran, 2014) conducted SPFs development for Connecticut's Interstate 

highways separately on single-vehicle and multivehicle crashes. All geometric variables were 

used to estimate SPFs in form of negative binomial, and the best fit model was identified by 

comparing goodness-of-fit metrics. The results suggested that it was important to incorporate the 

interaction effect between the speed limit and geometric variables. 

Internationally, SPFs calibrations were conducted based on HSM predictive method for 

urban four-lane divided roadway with angle parking in Riyadh, Saudi Arabia (Khalid and 

Mohamed, 2015). The study developed new SPFs using negative binomial regression models. 

The datasets contained fatal and injury crashes with AADT, geometric design feature data for 

undivided four-lane roadway (U4D) to calibrate HSM predictive method, and the resulted 

showed that the new SPFs performed better than the calibrated model in crash prediction.  

Recently, Pennsylvania developed regionalized SPFs for two-lane rural roads by 

modelling three regional levels: statewide, engineering district and individual countries. Negative 

binomial models were utilized to form the SPFs, the statewide database consisted of large size 

data more than 10,106 miles and over 113,600 reported crashes. Three methods were used to 

compare different regionalized SPFs using GOF, cumulative residuals plots, and RMSE. The 

predicted values were compared to observed values based on 8 years' data. The results indicated 

that the district-level SPFs with county-level adjustment factors had a better performance in 

predicting crashes than other regional SPFs.  It was necessary to develop an analytical method 

which can combine the results of before-and- after studies with cross-sectional studies in a 

meaningful and useful way (Li, Gayah, Donnell., 2017; Oh et al., 2003).  

2.3 Negative binomial model election  

To develop state-specific safety performance functions, statistical models need to be 

considered. The HSM recommends using the negative binomial model to develop state-specific 
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safety performance functions. This section did provide a wide range reviews of paper relate to or 

involve negative binomial in studies.   

Traditional Poisson and Poisson–gamma (or negative binomial) distributions were 

mentioned as the most common and popular statistical models for transportation safety analysts 

for modeling motor vehicle crashes (Srinivas and Dominique, 2008). There were some previous 

studies conducting the comparison between commonly used statistical models. When selecting 

models, their advantages and disadvantages should be known. For example, since panel data 

became available and popular in the safety area, heterogeneity may bias the results and the issue 

needs to be addressed. Study results (Karlaftis and Tarko, 1998; Ambros et al., 2016) indicated 

that significant differences existed among the developments of modeling. It was shown that 

separate models were more efficient than the joint model, and simple crash prediction models 

were found sufficient for network screening. 

In 2007, a paper published on crash prediction model focusing on multilane rural roads in 

Italian. The Poisson, negative binomial and negative multinomial regression models were used to 

form the models and predicted the frequency of accident occurrence. Besides the common 

variables, safety effects such as stopping sight distance and pavement surface characteristic were 

taken into consideration. Moreover, separately analysis models were developed for tangents and 

curves. Regarding the model comparison, negative multinomial distribution was suggested as the 

most appropriate statistical regression tool for longitudinal crash data analysis. Because both 

Poisson and negative binomial models required the accident data to be uncorrelated in time, the 

random effect negative binomial model became more suitable due to the unobserved 

heterogeneity and serial correlation in the accident data (Caliendo, Guida, Parisi, 2007). 
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A different study evaluated the performance of Poisson and negative binomial regression 

models for analyzing the relationship between truck accidents and geometric design of road 

sections. The unknown parameters were estimated using the maximum likelihood method and 

results showed that negative binomial regression models using moment and regression-based 

methods should be used with caution (Miaou, 1994). 

A similar study was conducted to examine impacts of roadway geometric features on 

rural two-lane highway crash severity using data from Illinois from 2007-2009. This analysis 

used standard ordered logit and multilevel ordered logit as statistical models. The results showed 

that the multilevel ordered logit model provided greater consistency with the data generating 

mechanism and could be utilized to evaluate the safety effects of geometric design improvement 

projects (Haghighi, Liu, Zhang, Porter, 2018).  

Another study sought to document a new type of model, using the Generalized Waring 

(GW) distribution. The GW model could yield more information about the observed variance in 

datasets by separating it into three parts: randomness (explaining the model’s uncertainty), 

proneness (the internal differences between entities or observations), and liability (variance 

caused by other external factors that are difficult to identify and which were not included as 

explanatory variables). The results showed that the GW model could provide meaningful 

information about the source of variance in crash data, and yielded a fit better than the negative 

binomial model for both empirical datasets (Peng, Lord, Zou, 2014). 
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A Bayesian hierarchical Poisson random effects spline model incorporated both spatial and 

temporal components into a unified framework for space and time surveillance. The tool might 

be used for routine monitoring focusing on visually describing the spatial distribution of accident 

rates/ratios over regions and time in order to link critical factors for further investigation 

(MacNab and Ying C., 2003). A project (Wang et al., 2016) used 36 safety-related parameters 

for three- and four-legged non-signalized intersections in Alabama, aiming to explore the 

influence on intersection characteristic scores while choosing statistical models for estimating 

SPFs. Poisson regression, negative binomial regression, regularized generalized linear model 

(GLM) and boosted regression trees (BRT) were used to evaluate SPFs. The results are shown in 

Figure 2-5. The figure shows the error for each type of model at different levels of complexity. 

The BRT model had substantially lower prediction error and relatively stable performance than 

the other three models. The Poisson regression model is the one most used to generate SPFs, as it 

captures the discrete nature of count data. However, negative binomial was considered better 

than Poisson since count data is often overdispersed in Poisson models. The traditional GLM 

models form the linear structures which could only assign the importance to the linear 

relationship between some intersection characteristics and crash rate. 

Figure 2-5 Cross-validated prediction error measured by the negative mean log-likelihood (Wang 

et al., 2016). 
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CHAPTER 3.    DATA DESCRIPTION 

3.1 Overview of Data Description 

The main purpose of this study is to examine the spatial and temporal transferability of 

crash prediction models which are generated to obtain SPFs. The models were estimated using 

subsets of the data and a validation process was conducted to evaluate the predictive ability and 

performance of each model over space, time and both dimensions. Two databases were the 

primary source of data: the Geographic Information Management System (GIMS) database and 

the Iowa Crash database. GIMS contains traffic information as well as roadway geometric 

characteristics, and the Iowa Crash database compiles all reported crashes within the state of 

Iowa from police reports. Manual segment combination was conducted in order to achieve 

Highway Safety Manual (HSM) minimum segment length suggestion, and all involved segments' 

lengths were greater than 0.1 miles. ArcGIS and Microsoft Excel were used for data integration 

3.2 Iowa DOT Geographic Information Management System 

The Iowa DOT GIMS database contains georeferenced data describing numerous aspects 

of roadway information. The database is updated every other year to incorporate changes due to 

highway construction or maintenance activities. Each segment is assigned a link number called 

MSLINK which is an auto-incrementing variable assigned by the Modular GIS Environment 

software. MSLINK is the key reference for assembling and joining data in ArcGIS. There are 13 

different datasets in GIMS that cover almost all information for a specific roadway segment 

location, such as traffic information, roadway geometric design characteristic, etc. Among those 

datasets, Traffic, Road Info, and Direct Lane were mainly utilized in this study. 

The Traffic dataset provides information on traffic parameters, such as annual average 

daily traffic (AADT) and vehicle type distribution (i.e., the proportions of different classes of 
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vehicles in mixed traffic volume).  The Road Info dataset contains geometric information of 

roadway segments including surface type/width, median type/width, lane numbers and types 

(i.e., through lanes, turning lanes, two-way left turn lanes, etc.), etc. The Direct Lane dataset 

gives various characteristics related to roadway infrastructure or countermeasures, such as posted 

speed limit, shoulder type/width, curb presence, rumble strip installation conditions, etc.  

3.3 Iowa DOT Crash Database 

The Iowa DOT crash database records all reported crashes occurring in the State of Iowa. 

There are three subsets at the person level, vehicle level, and crash level. The database provides 

the crash date, location, and manner of collision, weather/light condition, crash severity, first 

harmful event, crash types, driver age, sex, and other crash information, integrated from police 

reports. For this study, only the crash-level dataset was used. 

Five years of crash data from 2012 to 2016 were integrated using ArcGIS and Microsoft 

Excel for this study. Crashes occurring along mainline Interstate highways (i.e., on through-lane 

sections) were identified and intercepted by applying a 50 feet buffer distance from the roadway 

mainline. QA/QC procedures were conducted to ensure the buffer width was selected correctly to 

contain relevant crashes. 
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3.4 Segment Combination 

Loading GIMS geodatabase in ArcGIS, all segments under Iowa DOT jurisdiction could 

be filtered out by using ‘select by attribute’ and making queries ‘Justice=1.’ Figure 3-1 shows the 

overview roadway layout under Iowa DOT jurisdiction. In order to get the interstate mainline 

system, new queries were made through ‘select by attribute' function as ‘syscode=1’ (i.e. 

Interstate highway classification code), ‘NINEONEONE' involving RAMP, LOOP, ST, SPE 

CASE, US20, etc. to clean current layout and show interstate mainline system only. Besides 

using queries for filtering, a column indicating roadway function was used as an additional 

check. Further checking was conducted while was doing the segment combination. After 

preliminary assembly, there were 4,153 segments under the interstate system and each segment 

owned unique MSLINK. Of these, 2,109 segments were shorter than 0.1 miles, which could not 

be used in model analysis according to the HSM. In Figure 3-2 below, the Iowa interstate 

mainline system is shown and shorter segments which needed to be combined to nearest longer 

segment are highlighted in red. 

Figure 3-1 Roadway layout under IowaDOT jurisdiction in GIMS 
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Figure 3-2 Interstate Highways layout with shorter segments highlighted 

Segment combination was conducted by adding a new column called ‘NewID’. The idea 

was to combine segments with lengths shorter than 0.1 miles to their nearest segments with 

lengths greater than 0.1. Manual combination was done because shorter segments were often 

located next to each other, making automated combination unreliable as engineering judgment 

was required to arrange the combination. After this process, the shorter segment’s MSLINK was 

changed to the MSLINK of the nearest longer segment under the NewID column, and the longer 

segment MSLINK remained the same. As mentioned previously, QA/QC was conducted during 

combination. Leftover ramp sections and very short isolated segments were removed. The final 

step of the combination used the ‘Dissolve’ function to spatially combine the segments based on 

NewID. New segment lengths were calculated for the combined segments. At the end of this 

process, there were 2050 segments with lengths ranging from 0.1 to 1.6 miles on the interstate 

mainline system. 

3.5 Data Integration Process 

With segment combination accomplished, roadway geometry, direct lane, and traffic info 

were joined to assemble a comprehensive database using the new segment definitions. Concerns 
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arose at this point that the geometric information used data from 2015 rather than individual 

geometric datasets for different years. For this study, an important assumption was made that the 

geometric information was consistent throughout the five-year period. The shorter segments 

were assumed to have the same characteristics with the nearest longer segments. For this study, 

the roadway and roadside features were all transferred into binary indicators for analysis. 

Crashes were spatially identified by making a 50ft buffer around the roadway centerlines as 

defined in the shapefiles. The 50-ft distance was determined from trial and error. Several 

attempts were made using values from 20ft to 150ft to obtain interstate crashes without involving 

nearby crashes on local streets or ramp sections. A 50-ft distance achieved the best performance 

in this regard. 

To export the attribute table from ArcGIS, some dataset restructuring and recoding was 

necessary. There were a few segments missing AADT data. To solve this issue, the AADT of the 

nearest segment was applied. This was done manually in ArcMap. During the column check, 

surface width, as well as median width, were excluded from analysis due to apparent 

measurement bias. The surface width definition was not officially defined, while median width 

and surface width were confused when approaching interchange areas. Binary indicator variables 

would be used to minimize the bias. The surface type was recoded based on material (either 

asphalt or concrete), which is shown in Table 3-1. The median type was recoded into two binary 

categories which indicated whether a barrier installed or not, and whether the median surface 

was paved or grassy. The median barrier determination was made by comparison with Iowa 

DOT Cable Median Barrier Project Geodatabase records. Each column was checked before 

integration with the analysis tool; 42 out of 2050 records showed two lanes under the “number of 

lanes” column, but this did not match lane type records which had been corrected. Regarding the 
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lane number and lane type data, the new column called ‘Transition_zone’ was recoded which 

indicated current segment located within transition area (i.e. lane type record involves number 

6_exit lane, 7_entrance lane, 9_other). 

Table 3-1 Recoding summary for Surface_Type 
 

Surface_Type_Code Description  Count Surface_Asphalt Amount 
60 Generic asphalt 88 1 

950 
65 Asphalt on old Portland cement 

concrete 745 1 

69 Asphalt on asphalt 66 1 

92 Combination surface-asphalt and 
asphalt  51 1 

70 Generic concrete 6 0 

1100 
74 New type Portland cement 

concrete( not reinforced) 894 
0 

76 
New type Portland cement 
concrete( fully reinforced） 190 

0 

79  Portland cement concrete on asphalt 10 0 
3.6 Data Summary 

 To obtain a better fit crash prediction model for a segment group, 10 different predictor 

variables were included to generate safety performance functions including segment length, 

AADT, and binary indictor variables covering surface type, and roadside/roadway features. 

Those variables could be used in SPFs to predict crash frequency. The descriptive statistics of the 

predictor variables are shown in Table 3-2. Segment lengths ranged from 0.10 to 1.61 miles, with 

a total length for all analysis segments of 779.97 miles. The presence of rumble strips, median 

features, and speed limits are treated as binary indicators in the models, following the HSM 

recommendations. In addition, each segment’s yearly crashes were counted. There were 2050 

segments in the Interstate database, and 24,617 crashes were reported on Interstate segments 

from 2012 to 2016, as shown in Table 3-3. 
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Table 3-2 Interstate database descriptive statistic summary 

Variables Min Max Sum Median Mean Std. Dev 
Segment_Length 0.100 1.609   0.267 0.380 0.2813 
AADT_2012 5700 118300  21400 26690 18471.15 
AADT_2013 5700 119500  21500 26832 18634.21 
AADT_2014 5400 127100  22100 27988 19278.91 
AADT_2015 5600 130800  23000 28977 19895.29 
AADT_2016 5500 135300  23400 29305 20105.98 
Surface Type ( 1 if asphalt; 0 if concrete) 0 1 899 0 0.439 0.4963 
Shoulder_present_L (1 if yes; 0 otherwise) 0 1 2015 1 0.983 0.1296 
Shoulder_present_R (1 if yes; 0 otherwise) 0 1 2034 1 0.992 0.0880 
Rumble_Installed_ L (1 if yes; 0 otherwise) 0 1 1803 1 0.880 0.3256 
Rumble_Installed_ R (1 if yes; 0 otherwise) 0 1 1830 1 0.893 0.3096 
Speed Limit 55 70  70 68.080 3.8341 
Speed limit_55 (1 if yes; 0 otherwise) 0 1 102 0 0.050 0.2175 
Speed limit_60(1 if yes; 0 otherwise) 0 1 54 0 0.026 0.1602 
Speed limit_65(1 if yes; 0 otherwise) 0 1 373 0 0.182 0.3859 
Speed limit_70(1 if yes; 0 otherwise) 0 1 1521 1 0.742 0.4377 
Median_surface_hard(1 if hard surface; 0 
if grass surface) 0 1 176 0 0.086 0.2802 
Transition_zone(1 if contains exit/entrance 
lane; 0 if through lane only) 0 1 450 0 0.220 0.4140 
Cable_Barrier_Installed(1 if yes; 0 
otherwise) 0 1 735 0 0.359 0.4797 

 
Table 3-3: Crash data summary 
  Min Max Sum Median Mean SE.Mean CI.Mean.95% Std.Dev 
Crash_2012 0 63 5578 1 2.721 0.0917 0.1798 4.1502 
Crash_2013 0 60 5472 1.5 2.669 0.0853 0.1673 3.8618 
Crash_2015 0 33 4693 1 2.289 0.0735 0.1442 3.3296 
Crash_2016 0 55 3750 1 1.829 0.0651 0.1276 2.9463 
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CHAPTER 4.    METHODOLOGY 

Under this section, the detailed methodology used as a part of this study is discussed, 

including a description of the statistical methods, validation techniques and goodness-of-fit tests. 

As the primary purpose of this study is to examine the spatial and temporal transferability of 

SPFs, a description of how the analysis datasets prepared is first presented. 

4.1 Data Preparation and Summary  

The full database described in the previous chapter is comprised of 2,050 segments. For 

each segment, geometry, traffic volume, and crash data are obtained for two-time periods: (1) 

2012 to 2013; and (2) 2015 to 2016.  

After the original database was developed, random selection was conducted in R studio. 

The original database was divided into two equal size subsets named Group_A and Group_B 

respectively. Ultimately, Group A and B from random selection used in this study had similar 

total segment length, and the differences among total crashes for each year were smallest. The 

descriptive summary of Group A and B can be found in Table 4-1. From the summary, the total 

length of segments of Group_A was 389.548 miles, and Group_B had similar total segment 

length as 390.424 miles. It could be seen that Group A and B had similar feature distributions. 

For example, the groups are well balanced with respect to traffic volumes, surface type, speed 

limit, and other geometric characteristics. 
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Table 4-1: Subset descriptive statistic summary 

  Group_A Group_B 
  Sum Mean Std.Dev Sum Mean Std.Dev 
Segment_Length 389.548 0.38 0.28 390.424 0.38 0.29 
Average AADT of 2012-2013 27389600 26721.56 18069.62 27470115 26800.11 19029.48 
Average AADT of 2015-2016 29806950 29079.95 19369.29 29931800 29201.76 20561.03 
Surface Type ( 1 if asphalt; 0 
if concrete) 455 0.44 0.50 444 0.43 0.5 

Shoulder_present_L (1 if yes; 
0 otherwise) 1008 0.98 0.13 1007 0.98 0.13 

Shoulder_present_R (1 if yes; 
0 otherwise) 1016 0.99 0.09 1018 0.99 0.08 

Rumble_Installed_ L (1 if yes; 
0 otherwise) 912 0.89 0.31 891 0.87 0.34 

Rumble_installed_R (1 if yes; 
0 otherwise) 921 0.90 0.30 909 0.89 0.32 

Speed limit_55 (1 if yes; 0 
otherwise) 49 0.05 0.21 53 0.05 0.22 

Speed limit_60(1 if yes; 0 
otherwise) 20 0.02 0.14 34 0.03 0.18 

Speed limit_65(1 if yes; 0 
otherwise) 195 0.19 0.39 178 0.17 0.38 

Speed limit_70(1 if yes; 0 
otherwise) 761 0.74 0.44 760 0.74 0.44 

Median_surface_hard(1 if 
hard surface; 0 if grass 
surface) 

78 0.08 0.27 98 0.1 0.29 

Transition_zone(1 if contain 
deceleration/acceleration 
lane; 0 if through lane only) 

213 0.21 0.41 237 0.23 0.42 

Cable_Barrier_Installed(1 if 
yes; 0 otherwise) 387 0.38 0.49 348 0.34 0.47 

Total Crash of 2012-2013 5457 5.32 7.64 5593 5.46 7.56 
Total Crash of 2015-2016 4184 4.08 5.62 4259 4.16 5.96 

 

4.2 Statistical methodology of SPF development  

Safety Performance Functions are crash prediction models developed from past 

observed crash data, site characteristics, and roadway traffic information. For developing 
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segment-level SPFs, the total crashes for analysis period would be used as the exposure 

variable. In this study, negative binomial regression model was run in R studio to obtain the 

SPFs, the accuracy and transferability of the models was examined.  

4.2.1 Generalized Linear models 

Crashes are randomly occurring events; crash data is nonnegative and discrete in nature. 

Consequently, some segments have minimal or zero crashes. This means that crash 

distributions do not follow the normal distribution. In this case, in NCHRP 17-45, the 

researchers used nonlinear regression to develop SPFs. The traditional generalized linear 

models (GLM) models form the linear structures which assign the importance to the linear 

relationship between roadway characteristics and crash rates, and the models allow the 

predictor variables to have error distributions other than normal distributions. Also, the 

models can fit maximizing the likelihood or log-likelihood of the observed parameters  

In a generalized linear model, the dependent variable Y is assumed to be generated from 

a specific distribution: usually either the normal, binomial, Poisson or Gamma distributions 

are used. The distribution of mean, μ, depends on the independent variables, Xi. The 

equation can be written as: 

𝑃𝑃(𝑦𝑦𝑖𝑖) = 𝜇𝜇𝑖𝑖 = 𝑔𝑔−1 ∗ (𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖)                                                                                        (3)   

Where 𝑃𝑃(𝑦𝑦𝑖𝑖) is the expected value, 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 is the linear predictor, and g is the link function. 

Under this framework, the variable can be expressed as: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑖𝑖) = 𝑉𝑉(𝜇𝜇) = 𝑉𝑉�𝑔𝑔−1(𝛽𝛽𝛽𝛽)�                                                                              (4) 

4.2.2 Negative Binomial Regression Models 

There are two types of commonly used count models. As mentioned previously 

these are the Poisson and negative binomial (also known as Poisson-gamma models) 
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regression models. The negative binomial regression is a type of generalized linear 

model where the dependent variable Y is count data for events occurring within a 

defined time period. The probability of the number of crashes occurring within dataset 

during a specific time period is given by: 

𝑝𝑝(𝑦𝑦𝑖𝑖) = 𝑃𝑃(𝑌𝑌 = 𝑦𝑦𝑖𝑖) = 𝑒𝑒−𝜆𝜆∗𝜆𝜆𝑖𝑖
𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖!
                                                                                     (5)             

where y𝑖𝑖 is the number of crashes for segment i, and λi is the Poisson parameter for segment 

i. For this study, λi will be the expected number of crashes at segment i for a given time 

period. The expected number of crashes can be expressed as: 

λ𝑖𝑖 = EXP(β1X1  +  β2X2  +  ⋯  +  β𝑛𝑛X𝑛𝑛)                                                                  (6) 

where X1 through Xn are explanatory variables which represent site characteristics such as 

traffic volumes, speed limit, roadside and cross-section features; β1 through βn are the 

estimate coefficients obtained from the regression analysis. The mean number of crashes 

was assumed to be equal to the variance. However crashes occurred randomly, and crash 

data in nature therefore naturally have greater variances. This is known as overdispersion. 

Overdispersion can be handled by adding an additional term to the expression for λi, as 

shown below: 

𝜆𝜆𝑖𝑖 = 𝐸𝐸𝐸𝐸𝐸𝐸(β1X1  +  β2X2  +  ⋯  +  β𝑛𝑛X𝑛𝑛 + 𝜀𝜀𝑖𝑖)                                                    (7) 

Here, the new term 𝜀𝜀𝑖𝑖 is a gamma-distributed error term with a mean equal to one and 

variance α (also known as the overdispersion parameter). The inclusion of the 

overdispersion parameter allows the variance to differ from the mean, as demonstrated in 

the equation below: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑖𝑖) = 𝐸𝐸(𝑦𝑦𝑖𝑖) + 𝛼𝛼𝛼𝛼(𝑦𝑦𝑖𝑖)2                                                                                            (8) 
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This can be interpreted as follows. A positive estimated coefficient represents an increased 

effect in the total number of crashes, while a negative sign indicates a decreased effect in 

the total number of crashes. To obtain the marginal effect which represents the percentage 

increase or decrease in the number of total crashes, the equation can be expressed as:  

∆𝜆𝜆 = 100 ∗ �𝑒𝑒𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛 − 1�                                                                                                  (9)     

Where Δλ is the percentage change in the number of crashes. 

 
4.3 Validation study design procedure and methods  

Eight statistical models were developed using the negative binomial regression in R 

studio to fully examine the transferability of SPFs. Cross-validation was conducted using the 

results from those eight models and a validation technique was applied to examine the spatial 

and temporal transferability of SPFs as well as the predictive abilities.  

The transferability of a model refers to the degree to transfer the results can be 

generalized from a research setting to other contexts or settings (Trochim, 2006). In this case 

study, negative binomial regression is used to develop local SPFs and examine whether the 

method could be transferred and fit well to Iowa data as recommended by the HSM. The 

transferability is examined across space, time and both dimensions.  

Ultimately, eight models were developed, including four simple models (i.e. using a 

subset of available variables) and four full models (i.e. containing all significant variables). The 

models were developed using two data subsets, Group_A and Group_B, during different 

analyzed time periods: 2012-2013 and 2015-2016. Four parts of these two subsets were used to 

develop SPFs and the results were utilized further to examine spatial and temporal 

transferability. Four cohorts of data were organized as follows: 
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• Group_A during 2012-2013( Group_A1213) 

• Group_A during 2015-2016( Group_A1516) 

• Group_B during 2012-2013( Group_B1213) 

• Group_B during 2015-2016( Group_A1516) 

The models were then used to develop SPFs. For each of these four cohorts, a “simple” 

and a “full” model were generated, making eight models in total. These are referred to as, for 

example, SPF_A1213_simple and SPF_A1213_full respectively representing the simple and full models 

for Group_A1213 data. 

The transferability was examined among the models as well as across the models. SPFs 

developed using same subset were compared to each other by goodness-of-fit statistics to assess 

how well the model fit the data. The predictive ability and accuracy of prediction were evaluated 

by applying the SPFs to different validation sites. These sites were excluded from the model 

development. Next, the predicted values were directly compared to the actual observed values. 

The validation approaches are introduced subsequently and summarized in Table 4-2. 

To examine the spatial transferability, the locations were changed. SPF_A1213_simple and 

SPF_A1213_full were applied to Group_B1213 data, while, SPF_B1516_simple and SPF_B1516_full were 

applied to Group_A1516 data. Under this experiment design, the predictive ability across space 

was assessed. Group A and B contain mutually exclusive groups of roadway segments randomly 

selected from the full segment set. The time periods used for developing SPFs and validation 

were the same (2012-2013 or 2015-2016). 

To examine the temporal transferability, models developed under the earlier time series 

were applied to the later time series. Under this approach, SPF_A1213_simple and SPF_A1213_full 

were used to predict crash frequency of Group_A1516 data. Then SPF_B1213_simple and 
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SPF_B1213_full were applied to Group_B1516 data. Thus, the locations were the same but the time 

periods were changed. The SPFs were developed using data from 2012-2013 and used to predict 

crashes expected to occur in year 2015-2016.  

Spatial-temporal transferability was also examined using cross 

validation.SPF_A1516_simple and SPF_A1516_full were used to predict the crash frequency of 

Group_B1213 data; SPF_B1516_simple and SPF_B1516_full were applied to Group_A1213 data. This 

approach controlled the location and time period at the same time to examine the model 

performance using completely different datasets across both time and space. This is the most 

common situation encountered when using the HSM method for local SPF development.  

Table 4-2: Transferability examination study approach design summary 

Spatial transferability     

SPFs developed data Validated data Model 
type 

Group_A during 2012-2013 Group_B during 2012-2013 Simple 
Group_A during 2012-2013 Group_B during 2012-2013 Full 
Group_B during 2015-2016 Group_A during 2015-2016 Simple 
Group_B during 2015-2016 Group_A during 2015-2016 Full 
Temporal transferability     
Group_A during 2012-2013 Group_A during 2015-2016 Simple 
Group_A during 2012-2013 Group_A during 2015-2016 Full 
Group_B during 2012-2013 Group_B during 2015-2016 Simple 
Group_B during 2012-2013 Group_B during 2015-2016 Full 
Spatial-temporal transferability   
Group_A during 2015-2016 Group_B during 2012-2013 Simple 
Group_A during 2015-2016 Group_B during 2012-2013 Full 
Group_B during 2015-2016 Group_A during 2012-2013 Simple 
Group_B during 2015-2016 Group_A during 2012-2013 Full 

 

This experiment design excludes the year 2014.  On one hand, traffic information from 

2017 was missing, so only five years of data could be obtained for this case study. On the other 
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hand, considering the nature of SPF, when SPFs were generated using two-year periods of crash 

count data, the units would be crashes per mile per two years.   

As recommended by the HSM, the standard form of an SPF for roadway segments can be 

expressed using one of the three following forms (American Association of State Highway and 

Transportation Officials (AASHTO), 2010) (Srinivasan et al., 2011): 

𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐿𝐿 ∗ 𝑒𝑒𝑎𝑎+𝑏𝑏∗ln (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)  

𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑒𝑒𝑎𝑎+𝑏𝑏∗ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)+ln (𝐿𝐿) 

 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑒𝑒𝑎𝑎+𝑏𝑏∗ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)+𝑐𝑐∗ln (𝐿𝐿) 

It can be expected that driving on longer segments results in longer exposure time than the 

shorter segment. In this case, the number of crashes can be expected to increase while driving on 

the roadway. Therefore, the third equation was an adjusted form of SPFs which was suggested in 

the study received acknowledge from transportation professionals where a and b are regression 

coefficients to be estimated using crash data, c is a parameter indicating the relationship between 

crash frequency and segment length. In this study, the length of the segment had been offset in 

log form, which meant that the crash frequency was predicted as crashes occurred on unit mile 

which was crash per mile per analyzed year period, and the equations can be simplified as 

follow: 

Simple model: 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑒𝑒𝑎𝑎+𝑏𝑏∗ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)                                                                               (10) 

Full model: 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐸𝐸𝐸𝐸𝐸𝐸(𝑎𝑎 + 𝑏𝑏 ∗ 𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + ∑ 𝑐𝑐𝑖𝑖 ∗  𝑥𝑥𝑖𝑖∇𝑖𝑖 )                                            (11) 

where ci is the parameter estimate for variable xi. 

Goodness-of-fit measures are used to evaluate the ability of the models to represent the 

observed data. McFadden’s pseudo R2 was used that the intercept model’s log likelihood was 

treated as squares total, and the full model’s log likelihood was treated as total squared errors. 
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When comparing models on the same data, the McFadden R2 would be higher for the model with 

the greater log likelihood.  The likelihood is the occurrence probability resulted in given 

parameter estimates. The higher the likelihood is, the better the model. The Akaike Information 

Criterion (AIC) was used to evaluate the suitability of the models using the maximum likelihood 

concept. AIC describes the trade-off between variance and bias, and is calculated by:  

AIC = –2LL +2 × NP                                                                                              (12) 

where NP is the number of parameters. The lower the AIC value, the better the model is because 

the number of parameters is a factor affecting the AIC, and effectively discourages overfitting of 

data by penalizing the addition of parameters. So the AIC can be used for comparing models 

with the same number of variables. 

Because the analyzed facility was an Interstate highway system, the estimated models in 

this study may not capture the features as accurately as possible. In this case, simple model was 

necessary because the inclusion of more variables may increase the prediction errors. Previous 

studies suggest that simple models could be more effective for prediction. Better fit models were 

identified by seeking smaller AIC, higher McFadden R2, and higher log likelihood.  

Cross-validation is the process for out-of-example evaluation which can assess how the 

fit of a statistical analysis developed based on the independent dataset. The predictive accuracy 

of each model would be evaluated. In order to assess how good a prediction is that can be either 

measure the predictive accuracy per se or compare various predicted models. The process can 

validate the models through analyze the goodness of fit of the regression, check regression 

residuals, and check the predictive performance of models by being applied on the data which is 

not used in model development. 
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Mean absolute error (MAE) is a measure of difference between two continuous variables. 

It is an average of the absolute errors where 𝜇𝜇𝑖𝑖 is the actual observed crash count and yi is the 

predicted value from developed SPFs. The equation is: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝜇𝜇𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

Mean square error (MSE) is probably the most commonly used error metric. It penalizes larger 

errors because squaring larger numbers has a greater impact than squaring smaller numbers.  The 

MSE is the sum of the squared errors divided by the number of observations. The equation is: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ (𝜇̂𝜇𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

The Root Mean Square Error (RMSE) is simply the square root of the MSE.  

 These three metrics can be used for model validation. The MAE measures the average 

magnitude of the errors in a set of predictions, and it is the average over the test sample of the 

absolute differences between prediction and actual observed crash count where all individual 

differences have equal weight. The MSE is a measure of how close the predicted value fit the 

actual observed data. The smaller the MSE, the closer the fit is to the observed data. Additional, 

RMSE is the square root of the MSE which can be expressed as the average distance of a data 

point from the fitted point measuring along vertical axis. Both metrics can range from zero to 

infinite and the direction of errors are different. They ate negatively-oriented scores, which 

means the lower values are better.  
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CHAPTER 5.    RESULTS AND DISCUSSION 

5.1 Model results of developed SPFs 

To examine the transferability of safety performance functions, SPFs first needed to be 

developed.  As mentioned in the previous chapter, four “simple” SPFs were generated using 

SPFs which included only AADT and segment length as their variables. Four “full” SPFs were 

developed by including all of the significant variables.  In this study, variables achieved at least 

95% confidence were retained in the SPFs.  

Table 5-1 and 5-2 show the model results using Group_A1213. Treating segment length as 

offset, the units of were crashes per mile per analysis period. The estimated number of crashes 

from SPF_A1213_simple was higher than SPF_A1213_full. The simple model showed that the crashes 

would increase by 1.36% if AADT increased by 1.0% and the full model presented an increase 

of 1.08% if AADT increased by 1.0%. When treating length as offset, the estimates of log 

(AADT) are generally close to 1, but the simple model had slightly higher estimates on log 

(AADT) and the full model estimate of log (AADT) was dropped within general range usually 

closed to 1.0. This was reasonable given that that simple model only includes length and AADT, 

and the full model contained all other potential variables which would tend to weaken and 

distribute the effect of AADT. In the full model, speed limit at 55 mph and 65 mph had positive 

estimates compared to the base condition with speed limit at 70 mph. The positive estimates 

indicated that those variables would increase the crash frequency. Since this study did not 

separate urban and rural areas, the results more likely implied the effect of the area where the 

segments were located. Urban areas usually have speed limits below 70 mph (a posted speed 

limit of 55 mph is common). Variables regarding asphalt surface and hard median also indicated 

urban locations, higher volume demand and more complex traffic transit situations resulting in 
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higher crash frequency. In addition, segments with cable median barriers had positive value of 

coefficient estimates which indicated those segments had higher crash frequencies. Cable median 

barriers were installed on those segments as a countermeasure to decrease crash severity, and 

drivers driving on those segments with cable median barriers installed were more likely to occur 

crashes.  To identify the better fit model between these two models, the higher McFadden R2 of 

0.163, and the higher values of log-likelihood and lower AIC indicate that the full model 

performs better than the simple model.  

Table 5-1: Model results using Group_A1213 

SPF_A1213_simple  
Coefficients: Estimate Std. Error Z value Pr(>|z|)  
(Intercept) -11.249 0.44836 -25.09 <2e-16 *** 
log(Ave_AADT_1213) 1.36425 0.04391 31.07 <2e-16 *** 
---      
AIC 4806.5 Std.Err 0.268   
Theta 3.229 McFadden R^2 0.150934  
2 x log-likelihood -4800.52     
SPF_A1213_full 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) -8.8128 0.73787 -11.94 < 2e-16 *** 
log(Ave_AADT_1213) 1.08255 0.07248 14.936 < 2e-16 *** 
Speed limit_55 0.73308 0.11559 6.342 2.27E-10 *** 
Speed limit_60 0.34223 0.18001 1.901 0.057275 . 
Speed limit_65 0.25781 0.0721 3.576 0.000349 *** 
Speed limit_70 (base condition) N/A N/A N/A N/A  
Surface_Asphalt 0.16571 0.04947 3.35 0.000809 *** 
Rumble_installed_R 0.19655 0.14411 1.364 0.172593  
Rumble_installed_L 0.03747 0.1446 0.259 0.795558  
Shoulder_present_R -0.16185 0.26717 -0.606 0.544637  
Shoulder_present_L 0.05065 0.21714 0.233 0.815572  
Cable_barrier_Installed 0.19147 0.06174 3.101 0.001928 ** 
Median_surface_hard 0.29576 0.11712 2.525 0.01156 * 
Transition_zone 0.12148 0.06284 1.933 0.053241 . 
---      
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Table 5-2: Model results using Group_A1213 (Continued) 

AIC 4759 Std.Err 0.329   
Theta 3.729 McFadden R^2 0.163234  
2 x log-likelihood -4730.98     
*p<0.05, **p<.01, ***p<.001           

 

 SPF_A1516_simple and SPF_A1516_full are presented in Table 5-3. In addition to the variables 

mentioned previously such as speed limit at 55 mph and 65 mph, asphalt surface and concrete 

median surface were associated with higher crash frequency. Cable median barrier installation 

was also associated with higher crash frequency. Right side rumble strip installation was 

captured with a positive estimate, implying that they also have an increasing effect on crash 

frequency. The rumble strips installed along the edges of the roadway can inform fatigued or 

distracted drivers when they are about to leave the travel lanes. The positive estimate here is still 

reasonable, since drivers on those particular segments are more likely to drive off the roadway, 

and rumble strips were installed as a countermeasure. Within these two models, the full model 

still had better performance with better GOF results. Recall the database was assembled at 

segment level, and geometric features were assumed unchanged throughout analyzed five years. 

SPF_A1213 and SPF_A1516 all used Group_A data and this meant the sample size of these four 

models were the same, and changed variables were average AADT values and actual crashes 

observed on those segments. The McFadden R2 values for the 2015-2016 models are similar to 

the 2012-2013 models, but the AIC and log-likelihood of SPF_A1516_full was much higher than 

model SPF_A1213_full. The model results were different because of the model complexity as well 

as the different exposure even using the same data group.  
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Table 5-3: Model results using Group_A1516 

SPF_A1516_simple 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) -11.363 0.48022 -23.66 <2e-16 *** 
log(Ave_AADT_1516) 1.33759 0.04657 28.72 <2e-16 *** 
---      
AIC 4390.7 Std.Err 0.304   
Theta 3.228 McFadden R^2 0.1498  
2 x log-likelihood -4386.7     
SPF_A1516_full 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) -8.2094 0.78312 -10.483 < 2e-16 *** 
log(Ave_AADT_1516) 1.02836 0.07643 13.455 < 2e-16 *** 
Speed limit_55 0.47348 0.12463 3.799 0.00015 *** 
Speed limit_60 0.08094 0.19267 0.42 0.67441  
Speed limit_65 0.3423 0.07531 4.545 5.48E-06 *** 
Speed limit_70 (base condition) N/A N/A N/A N/A  
Surface_Asphalt 0.13734 0.05255 2.614 0.00896 ** 
Rumble_installed_R 0.33705 0.14755 2.284 0.02235 * 
Rumble_installed_L -0.2017 0.14726 -1.37 0.17068  
Shoulder_present_R -0.3955 0.27197 -1.454 0.14589  
Shoulder_present_L -0.0331 0.22516 -0.147 0.88331  
Cable_barrier_Installed 0.19294 0.0658 2.932 0.00337 ** 
Median_surface_hard 0.29175 0.12158 2.4 0.01641 * 
Transition_zone 0.142 0.06687 2.124 0.03369 * 
---      
AIC 4358 Std.Err 0.379   
Theta 3.738 McFadden R^2 0.16039  
2 x log-likelihood -4330     
*p<0.05, **p<.01, ***p<.001         
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SPF_B1213_simple and SPF_B1213_full used data from Group_B1213 and the results are shown 

in Table 5-4.  The full model captured more variables, achieving 95% confidence, and the 

estimate of AADT and intercept had larger differences from the simple model’s estimates. The 

estimate of intercept was -11.09 in the simple model and -6.23 in the full model. In addition, if 

the AADT increased by 1.0%, the crashes are predicted by the simple model to increase by 

1.35% and are predicted by the full model to increase by 0.95%. Compared to the base condition, 

speed limit at 70 mph and speed limit at 60 had positive estimates which indicted an increasing 

effect on crash frequency. Right shoulder presence had a negative estimate and p-value smaller 

than 0.001 which indicated that the segments with right shoulders had significantly lower crash 

frequencies. This makes sense considering that right shoulders increase the clear zone for errant 

vehicles and can thus prevent crashes from occurring. The transition zone obtained a positive 

estimate, indicating an increasing effect on crash frequency. Transition zones include exit and 

entrance lanes. Thus, there are more complex driving activities and traffic conditions occurring 

in those sections, leading to higher crash frequencies. SPF_B1213_simple performed the weakest 

among all eight models and fit the data with the highest AIC and lowest log-likelihood. 
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Table 5-4: Model results using Group_B1213 

SPF_B1213_simple 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) -11.09 0.4527 -24.5 <2e-16 *** 
log(Ave_AADT_1213) 1.3544 0.0444 30.5 <2e-16 *** 
---      
AIC 4917.5 Std.Err 0.217   
Theta 2.676 McFadden R^2 0.13804  
2 x log-likelihood -4911.5     
SPF_B1213_full 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) -6.2357 0.68798 -9.064 < 2e-16 *** 
log(Ave_AADT_1213) 0.95995 0.06904 13.904 < 2e-16 *** 
Speed limit_55 0.65527 0.1088 6.023 1.72E-09 *** 
Speed limit_60 0.3304 0.13942 2.37 0.0178 * 
Speed limit_65 0.38392 0.07267 5.283 1.27E-07 *** 
Speed limit_70 (base condition) N/A N/A N/A N/A  
Surface_Asphalt 0.11484 0.04959 2.316 0.0206 * 
Rumble_installed_R 0.23489 0.1446 1.624 0.1043  
Rumble_installed_L -0.2637 0.14218 -1.855 0.0636 . 
Shoulder_present_R -1.0522 0.26433 -3.981 6.88E-05 *** 
Shoulder_present_L -0.2033 0.19153 -1.061 0.2885  
Cable_barrier_Installed 0.3034 0.06136 4.945 7.63E-07 *** 
Median_surface_hard 0.17863 0.11069 1.614 0.1066  
Transition_zone 0.24262 0.05928 4.093 4.26E-05 *** 
---      
AIC 4757.24 Std.Err 0.324   
Theta 3.704 McFadden R^2 0.16511  
2 x log-likelihood -4757.2     
*p<0.05, **p<.01, ***p<.001 
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The last two model results developed by using Group_B1516 are summarized in Table 5-5 

and 5-6. Similar to the previous models, speed limit at 55 mph and speed limit at 65 mph also 

were found to increase crash frequency. Similar results were also seen for cable median barrier 

installation and transition zone indicator variables. In this model, the presence of a left shoulder 

was found to be significant, with a negative estimate indicating that a left shoulder decreased the 

number of crashes. This can be attributed to a greater clear zone, similar to a right shoulder. 

SPF_B1516_simple and SPF_B1516_full indicated better fits of data by obtaining higher values of 

McFadden’s R2. Models developed using data from 2015-2016 performed better than models 

based on data during 2012-2013. That could be identified from the values of AICs and log-

likelihoods. Although the goodness-of-fit values were similar, the full model still performed 

slightly better than simple model. Finally, Table 5-5 summarizes the results of estimates from 

model to model. The differences of each variable’s estimate among all eight SPFs can compared.   

Table 5-5: Model results using Group_B1516  

SPF_B1516_simple 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) -12.372 0.443 -27.93 <2e-16 *** 
log(Ave_AADT_1516) 1.43573 0.04282 33.53 <2e-16 *** 
---      
AIC 4287.1 Std.Err 0.384   
Theta 3.901 McFadden R^2 0.17484  
2 x log-likelihood -4281.1     
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Table 5-6: Model results using Group_B1516 (Continued) 

SPF_B1516_full 
Coefficients: Estimate Std. Error z value Pr(>|z|)  
(Intercept) -8.5701 0.71808 -11.935 < 2e-16 *** 
log(Ave_AADT_1213) 1.10889 0.06994 15.855 < 2e-16 *** 
Speed limit_55 0.44134 0.10781 4.094 4.25E-05 *** 
Speed limit_60 0.0424 0.14061 0.302 0.76299  
Speed limit_65 0.46585 0.07195 6.474 9.54E-11 *** 
Speed limit_70 (base condition) N/A N/A N/A N/A  
Surface_Asphalt 0.09402 0.04977 1.889 0.05887 . 
Rumble_installed_R 0.09833 0.13776 0.714 0.47537  
Rumble_installed_L -0.1939 0.13672 -1.418 0.15621  
Shoulder_present_R -0.311 0.24896 -1.249 0.21156  
Shoulder_present_L -0.3645 0.1847 -1.973 0.04845 * 
Cable_barrier_Installed 0.15996 0.06214 2.574 0.01004 * 
Median_surface_hard 0.08009 0.10775 0.743 0.45728  
Transition_zone 0.18607 0.06042 3.08 0.00207 ** 
---      
AIC 4217.3 Std.Err 0.516   
Theta 4.802 McFadden R^2 0.19253  
2 x log-likelihood -4189.3     
*p<0.05, **p<.01, ***p<.001         
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Table 5-7: Model to model estimate results summary table 

  SPF_A1213_simple  SPF_A1516_simple SPF_B1213_simple SPF_B1516_simple 
Coefficients: Estimate Estimate Estimate Estimate 
(Intercept) -11.24904 -11.36313 -11.0904 -12.37243 
log(Ave_AADT_1213) 1.36425 1.33759 1.3544 1.43573 
---     

  SPF_A1213_full SPF_A1516_full SPF_B1213_full SPF_B1516_full 
Coefficients: Estimate Estimate Estimate Estimate 
(Intercept) -8.8128 -8.20942 -6.23572 -8.57009 
log(Ave_AADT_1213) 1.08255 1.02836 0.95995 1.10889 
Speed limit_55 0.73308 0.47348 0.65527 0.44134 
Speed limit_60 0.34223 0.08094 0.3304 0.0424 
Speed limit_65 0.25781 0.3423 0.38392 0.46585 
Speed limit_70 (base 
condition) N/A N/A N/A N/A 

Surface_Asphalt 0.16571 0.13734 0.11484 0.09402 
Rumble_installed_R 0.19655 0.33705 0.23489 0.09833 
Rumble_installed_L 0.03747 -0.20174 -0.26371 -0.19386 
Shoulder_present_R -0.16185 -0.39549 -1.05216 -0.31103 
Shoulder_present_L 0.05065 -0.03305 -0.2033 -0.36449 
Cable_barrier_Installed 0.19147 0.19294 0.3034 0.15996 
Median_surface_hard 0.29576 0.29175 0.17863 0.08009 
Transition_zone 0.12148 0.142 0.24262 0.18607 
---         

 
5.2 Validation analysis  

The validation results are shown and summarized in Table 5-6 below. The three 

approaches were conducted to examine the transferability of SPFs across time and space and 

both dimensions. After developing SPFs using different datasets, the coefficients were used to 

form the standard SPF equations using either equation 10 or 11. The predicted results were 

directly compared to the actual observed results. Since segment length was treated as offset, the 

actual predicted value for each analyzed segment should use the calculation results from either 

equation 10 or 11 and then multiply its actual segment length. SPF_A1213_simple was used as an 



www.manaraa.com

45 
 

example, the equation 10 was used as the basic form of SPF, and the expression could be 

expressed as: 

NSPF= [exp (-11.249+1.36425*ln (AADTavg))] × L, 

where AADTavg is the average AADT of the individual AADTs over the analysis period and L is 

the segment length. Where two years of data was used to generate SPF, the units of the predicted 

results after multiplying in the segment length work out to be crashes per analysis period per 

segment (rather than per mile).  To assess the predictive power and prediction accuracy, MAE, 

MSE, RMSE were calculated. These metrics were introduced in the previous chapter.  

To examine the models’ spatial transferability, SPF_A1213_simple and SPF_A1213_full were 

applied to Group_B1213 data and directly compared to the observed number of crashes. Similarly, 

SPF_B1516_simple and SPF_B1516_full were applied to Group_A1516 data.  

SPF_A1213_simple had the closest predicted result of 5818.88 compared to an observed 

number of crashes of 5593. Meanwhile, SPF_B1516_simple resulted in the smallest MAE and RMSE 

values. Among the four model results, full models obtained better performance than simple 

model in terms of their GOF coefficients (i.e. higher McFadden R2) , but in validations across 

space series data, the predicted ability of simple models performed better. 

Next, the temporal transferability was examined. The locations of the sites were 

controlled and the predicative ability was assessed by applying models to different time series. 

SPF_A1213_simple and SPF_A1213_full were used to predict the crash frequency for 2015-2016 for 

Group_A data, while SPF_B1213_simple and SPF_B1213_full were applied to predict the crash 

frequency of Group_B data for 2015-2016. Zooming in to the individual segment relationships, 

MAE and MSE were generally higher than those observed for the spatial validation tests. The 
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predicted results of Group_B1516 were more spread out that Group A1516. Also, all four models 

overpredicted the crash frequency, and resulted in higher predictive errors.  

Finally, spatial-temporal transferability was examined by controlling site locations and 

predictive year periods. For this activity, cross-validation process was used. SPF_A1516_simple and 

SPF_A1516_full were applied to Group_B1213 data, and SPF_B1516_simple and SPF_B1516_full were 

applied to Group_A1213 data. The simple models tended to under-predict the values, and the full 

models were more likely to over-predict the values. SPF_B1516_simple had the closest predicted 

value at 4030.71 compared to the observed value of 4184. The full models had better 

performance in fitting the data, but their predictive accuracy was not better than the simple 

models. Interestingly, the simple models had smaller MAEs but higher MSEs/RMSEs. Overall, 

SPF_B1516_full obtained the best results with relatively small predictive coefficients.  

To further compare the models, a calibration process was conducted. This is a reverse 

process to regression where the observation values of the dependent variables are known and 

used to predict a corresponding explanatory variable (Upton and Cook, 2006) Table 5-7 provides 

the calibrated validation results; the predicted value of each segment was calibrated by 

multiplying a calibration factor. The calibration factor was the ratio of the observed and 

predicted values. In this case, the total predicted value equaled the observed value.  

After calibration, the MAEs of predicted results using the same dataset became the same 

when examining spatial transferability. Also, MAEs and RMSEs were close to each other under 

the same settings. The full models obtained better performance in both data fitting and 

prediction. Regarding the temporal transferability, the MAEs were similar, and RMSEs occurred 

minor differences. When transferred the model across time in this case study. This might be 

attributable to the increase in AADT from 2012-2013 to 2015-2016 (see Table 5). The mean 
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difference of AADT between these two periods was almost 3000 per segment. The calibrated 

results of spatial-temporal transferability were not uniform. Both metrics existed differences 

between simple and full models using the same subset. Compared uncalibrated results to 

calibrated results, similar MAEs between estimation and validation sites indicated a strong 

support for transferability. The MAEs obtained from spatial transferability analysis were 

relatively similar compared to temporal transferability. Simple models more likely to be 

transferred because of the small differences between MAEs. Besides, the difference of MAEs 

more likely depend on how well the models fitting the data. Like mentioned previously, the 

models fit data during 2015-2016 better than data during 2012-2013.   

Overall, these three approaches examined the model transferability. The default 

assumption of this case study was the geometric features remained the same through these five 

years. Consequently, the spatial transferability was the most stable, and the spatial-temporal 

transferability came to the second. In contrast, temporal transferability became stable after 

calibration. The subject of spatial and temporal correlation was discussed in previous research, 

and it was observed that temporal correlation could result in incorrect estimation. This 

examination could be improved, and the issue could be addressed in the future study by 

improving the models.   
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Table 5-8: Validation results for uncalibrated models 

Spatial transferability 
 SPF_A1213_simple SPF_A1213_full SPF_B1516_simple SPF_B1516_full 

Validated sites Group_B1213  Group_B1213  Group_A1516 Group_A1516 
Actual observed 5593 5593 4184 4184 
Total predicted 5818.88 5028.63 4556.51 6256.91 
MAE 2.93 2.74 2.29 3.05 
MSE 24.88 23.52 14.64 27.23 
RMSE 4.99 4.85 3.83 5.22 
Temporal transferability 
 SPF_A1213_simple SPF_A1213_full SPF_B1213_simple SPF_B1213_full 

Validated sites Group_A1516 Group_A1516 Group_B1516 Group_B1516 
Actual observed 4184 4184 4259 4259 
Total predicted 6583.10 5605.58 6925.74 7661.40 
MAE 3.35 2.70 3.48 3.99 
MSE 31.20 21.78 32.60 43.57 
RMSE 5.59 4.67 5.71 6.60 
Spatial-temporal transferability 
  SPF_A1516_simple SPF_A1516_full SPF_B1516_simple SPF_B1516_full 

Validated sites Group_B1213  Group_B1213  Group_A1213  Group_A1213  
Actual observed 4259 4259 4184 4184 
Total predicted 3927.88 7003.54 4030.71 5698.72 
MAE 2.84 3.37 2.63 2.68 
MSE 27.25 35.49 23.65 19.46 
RMSE 5.22 5.96 4.86 4.41 
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Table 5-9: Validation results for calibrated models 

Spatial transferability 
 SPF_A1213_simple SPF_A1213_full SPF_B1516_simple SPF_B1516_full 

Validated sites Group_B1213  Group_B1213  Group_A1516 Group_A1516 
Actual observed 5593 5593 4184 4184 
Calibration factor 0.961 1.112 0.918 0.669 
MAE 2.882 2.836 2.184 2.143 
MSE 24.215 24.079 13.338 11.900 
RMSE 4.921 4.907 3.652 3.450 
Temporal transferability 
 SPF_A1213_simple SPF_A1213_full SPF_B1213_simple SPF_B1213_full 

Validated sites Group_A1516 Group_A1516 Group_B1516 Group_B1516 
Actual observed 4184 4184 4259 4259 
Calibration factor 0.636 0.746 0.615 0.556 
MAE 2.172 2.171 2.170 2.181 
MSE 12.906 12.906 13.148 14.634 
RMSE 3.593 3.592 3.626 3.825 
Spatial-temporal transferability 
  SPF_A1516_simple SPF_A1516_full SPF_B1516_simple SPF_B1516_full 

Validated sites Group_B1213  Group_B1213  Group_A1213  Group_A1213  
Actual observed 4259 4259 4184 4184 
Calibration factor 1.084 0.608 1.038 0.734 
MAE 2.796 2.845 2.601 2.626 
MSE 25.582 29.011 22.929 21.014 
RMSE 5.058 5.386 4.788 4.584 
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CHAPTER 6.    CONCLUSIONS AND LIMITATIONS 

6.1 Summary of Findings 

This study utilized negative binomial regression models to develop safety performance 

functions for the Iowa interstate system. Data for the entire system were collected for calendar 

years 2012-2013 and 2015-2016. These data were randomly halved and disaggregated into these 

two-year periods, resulting in four datasets of equal size. Separate models were then estimated 

for each dataset and a cross-validation approach was used to examine the model transferability 

over time, across space, and with respect to both dimensions. The predictive ability of each 

developed SPF was evaluated as a part of model validation. Each segment contained traffic 

information, basic roadway and roadside features and crash counts. The total crash counts for 

each two-year period were used as the dependent variable, segment length was treated as an 

offset (implying that crashes increase proportionately with respect to segment length), and 

annual average daily traffic (AADT) was log-transformed. All other included variables were 

converted into binary indicators. The roadway and roadside features were assumed to be the 

same during the analysis period from 2012 to 2016. Two different models were estimated for 

each of the four datasets. This included a simple model, which considered only segment length 

and AADT, as well as full models that included a range of geometric variables, as well.  

Overall, among these eight models, the performance of full models was generally better 

than simple model, as indicated by a lower Akaike Information Criterion (AIC) and higher log-

likelihood and R2 values. Although the temporal comparison assessed models generated using 

the same predictors, aside from changes in crashes and traffic volumes, the goodness-of-fit was 

markedly different between the two models. For example, for the four models derived using data 

from Group_A, although the intercepts and estimates were similar, the AIC for the models 



www.manaraa.com

51 
 

estimated from data during 2015-2016 was significantly better than the models estimated using 

2012-2013 data. Regarding the full models, the common significant variables were speed limit at 

55 and 65 mph, asphalt surface, and transition zones. Segments with cable median barrier 

installed also showed higher crash frequencies. The model results were slightly different among 

these four full models based on different exposures, some roadside features such like shoulder 

presence and rumble strip installation were captured in the models.  

Three approaches were used to examine the model transferability across space, time, and 

both dimensions simultaneously. To examine the spatial transferability, SPFs were estimated for 

each subset of the data over the same two-year periods (i.e., 2012-2013 and 2015-2016). The 

results from each SPF were then used to assess the predictive ability on the other sample (i.e., 

across different spatial locations). The predicted values were directly compared to actual 

observed values, and mean absolute error (MAE), mean squared error (MSE), and root mean 

squared error (RMSE) were calculated to assess the predictive ability and goodness-of-fit on the 

validated dataset.  Similarly, temporal transferability was examined by estimating SPFs within 

the same half of the dataset for each of the two time intervals. These models were then used to 

predict the crash frequency for the same data subset under the other two-year analysis period. 

This allowed for an examination of the transferability of the parameter estimates over time (i.e., 

the temporal stability of the parameters).  

When considering spatial transferability, it is interesting to note that simple models, 

which considered only AADT, showed better prediction capabilities as evidenced by smaller 

MAE, MSE, and RMSE values when applied to the other (validation) dataset. This may be due 

in part to the fact that the roadway geometry was uniform across the two periods. Overall, 

transferability across space showed relatively stable estimates.  
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However, performance was much poorer when considering temporal transferability. 

When conducting model validation, all the model results tended to significantly over predict 

when applied to the other subsample. Ultimately, the results of the calibration exercise showed 

significant variables in the estimates between and among groups. This is largely reflective of the 

fact that crashes declined considerably between 2012-2013 and 2015-2016. 

It was surprising to see that the comparison of spatial-temporal transferability showed 

better predictive capability than when considering only temporal transferability. However, the 

converse was true when the models were calibrated to adjust for the degree of overall over 

(under) prediction of the respective models. 

These results provide several important insights that reinforce the broader literature in 

this area. When applying SPFs, agencies are strongly recommended to either develop their own 

state-specific models or, at minimum, to calibrate the existing models from the Highway Safety 

Manual. In either case, it is critical that the underlying dataset is designed carefully and is 

representative of the broader set of locations to which the SPFs are to be applied. There is a 

strong argument to be made for simpler models. As design standards on interstate facilities are 

relatively stable and the geometric design features are typically quite uniform, applying simple 

AADT-only models is likely to provide acceptable performance when applying the results to 

other locations based upon the assessment of spatial transferability.  

Ultimately, agencies are encouraged to conduct these types of validation exercises across 

both space and time in order to obtain more accurate and stable predicted values. Although 

outside the scope of this study, potential concerns exist as to correlation of the spatial and 

temporal dimensions, and further explorations of the effects of time should be conducted to 

address the issue.   
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In conclusion, the transferability of SPFs was not found to be consistent across time and 

space. Overall, the predictive capability was different across each of the validation scenarios. 

From the eight developed SPFs and the validation results, agencies are recommended to carefully 

consider the application of existing SPFs when conducting planning level or network screening 

analyses. 

6.2 Limitations and Future Research 

This section discusses the limitations of this study and the potential improvements that 

could be done in future. Data quality is a principal limitation when developing and applying 

SPFs. This study leveraged information from the Geographic Information Management System 

(GIMS) database. This database is being phased out by the Iowa DOT and replaced by the 

Roadway Asset Management System (RAMS).  As a consequence, it is possible that higher 

fidelity and more timely geometric information in RAMS would allow for a more meaningful 

examination of performance differences between a simple, AADT-only model and a more 

complex model that considers a range of other important predictors. 

Even with the new database, quality assurance and quality control procedures are 

critically important. For example, over the course of this study, issues were identified with 

various pieces of information, including data on median widths and surface widths, each of 

which are particularly important. There were various instances of erroneous data, which were 

ultimately filtered out prior to conducting the analysis. There were a variety of potentially 

interesting relationships that could not explored given the difficulty in integrating information 

from various data sources. Cases like interchanges or ramps could be considered separately when 

assembling the database. A previous study (Oh et al., 2003) discussed internal validation for a 

rural intersection that indicated the crash models potentially experience omitting variables that 
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would affect safety （ i.e. potential correlations between variables)  Data standardization as well 

as collection practices needed to be improved. This issue could be addressed by using smaller 

scale (i.e., more precise) data. Regarding the sample size, currently, the database contained all 

segments of Iowa interstate system (2050 segments). For this study, Group_A and Group_B 

were randomly divided into groups of 1025 segments each. Instead of randomly selecting 50%, 

smaller percentages could be used to narrow down the sample size to assess how goodness-of-fit 

varies when considering smaller subsets of the data. Transferability could also be compared 

across smaller geographic regions, such as Iowa DOT districts. Additional areas of exploration 

could include assessing appropriate sample size recommendations, including determining lower 

bounds of sample size to obtain certain levels of precision.  This would also require 

consideration of related issues, such as minimum segment length, and the degree to which 

features on each segment are homogeneous. 

Refinements of segment definitions are recommended for some applications. For 

example, instead of conducting an analysis on the entire Interstate system, the study could focus 

on particular highways (e.g., I-80 and I-35), segments in urban areas, corridors located in 

specific counties, and so on. This would allow for a comparison of how sensitive model results 

are at a finer spatial level. 

Also, the site selection process could be improved. Instead of using R studio code to 

randomly select samples in consideration of various descriptive statistics for each group, group 

selection could be conducted spatially using tools like ArcGIS to ensure the sites were located 

within similar regions.  

Lastly, this case study used only negative binomial regression model as its statistical 

model for developing SPFs. As seen in related research in the literature review, additional 
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models could be considered besides negative binomial regression.  Some of these, such as 

random effects models, may result in models with better spatial and temporal transferability. 
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